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Abstract

Blind Source Separation (BSS) algorithms have often been in-
terpreted as a set of blind adaptive beamformers. Although this
interpretation does not entirely hold under realistic conditions, it
gives some useful insights on the self-steering capacity of BSS
techniques. Actually, while accurate source location informa-
tion is usually necessary to steer a beamformer, BSS offers the
possibility to recover the original source signals from a rever-
berant sound mixture without this prior knowledge. Intuitively,
this self-steering capacity should therefore imply that the BSS
demixing filters contain some useful information on the location
of each source. In this paper, we discuss the relations between
BSS and beamforming techniques, based on the general form of
the ideal separation solution. Two possible ways to extract the
location information from the BSS demixing system are then pre-
sented. Experiments using a broadband BSS algorithm based on
the TRINICON framework demonstrate the efficiency of the pro-
posed methods in a highly reverberant and noisy environment, for
up to six simultaneously active speech sources.

1 Introduction

Acoustic source localization aims at estimating the position of
one or several sound sources by exploiting the spatial diversity
offered by an array of microphones. Accurate localization of one
or several sound sources can serve in many applications as a pre-
liminary step to other processes like, e.g., steering a beamformer
or pointing a camera in the direction of a sound source.

To address the problem of localizing several simultaneously
active sound sources in noisy and reverberant environments, a
generic broadband approach, which jointly processes all fre-
quency bins, has been proposed for Blind Source Separation
(BSS) in [2, 3]. It performs blind adaptive Multiple-Input-
Multiple-Output (MIMO) system identification of the acousti-
cal system to extract the Time Differences Of Arrival (TDOAs)
of multiple sources, hence explicitly accounting for the multi-
path propagation of sound occurring in real environments. This
method has also been extended to the multi-dimensional case
in [7, 8], where real-time 2D localization of two sources was
demonstrated. Other BSS-based approaches for localizing two
sources exist [5, 6]. Originally developed to solve a permutation
problem specific to narrowband BSS, which considers each fre-
quency bin separately, they exploit the directivity patterns of the
demixing BSS filters to recover the Direction of Arrival (DOA) of
each sound source, hence working under the far-field assumption.
Whether based on a broadband or on a narrowband formulation,
all these methods aim at extracting some location information
from the BSS demixing filters. They therefore rely on the self-
steering capability of BSS, i.e., its capacity to recover each sound
source from a convolutive mixture, without any prior knowledge
on the source position.

In this paper, we restrict ourselves to the single-dimension
case but propose to treat the general case of P ≥ 2 sources. The
rest of the paper is organized as follows. We provide an overview
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Figure 1: BSS signal model.

on BSS in Sect. 2. We formulate the general form of the ideal
signal separation solution and use it to show the relations exist-
ing between BSS and beamforming techniques. In Sect. 3, we
review the TDOA estimation approach [3], and we propose a new
method exploiting the BSS directivity patterns similar to [6], and
extend these methods to the general case of P ≥ 2 sources and
to large microphone apertures. Experimental results are finally
provided in Sect. 4, where up to six simultaneously active speech
sources are localized in a reverberant and noisy environment.

2 Separation of convolutive mixtures

2.1 Problem formulation

Fig. 1 shows the general BSS setup. Because of the reverberation
in the acoustical environment, P source signals sq (q = 1 . . .P) are
filtered by a MIMO mixing system H modeled by M-tap Finite
Impulse Response (FIR) filters hqp between the q-th source and
the p-th sensor [1]. P signal mixtures xp are picked up by a mi-
crophone array, together with some background or sensor noise
np. We assume here that the number of active sources is less
or equal to the number of microphone signals (the P sources in
Fig. 1 might or might not all be simultaneously active). Further-
more, the sources are assumed to be mutually independent, which
in general holds for speech and audio signals.

To separate the source signals sq without access to the acous-
tical mixing system H, BSS algorithms force the output signals
yq to become statistically independent by suitably adapting the
weights of the BSS demixing system W, which captures the L-
tap FIR separating filters wpq between the p-th sensor and the
q-th output. In this paper, we consider a broadband second-order-
statistics realization of the generic TRINICON-based update rule
[1]. This is a block-online algorithm based on a broadband BSS
coefficient update, which processes signals on a block-by-block
basis. Note that this broadband approach does not suffer from the
internal permutation ambiguity encountered by narrowband BSS
techniques, where an output permutation alignment problem has
to be solved in each frequency bin (see, e.g., [5, 6, 9]).

The general form of the ideal separating filter matrix based on
the mixing system was shown in [2]. Expressed in the frequency
domain to substitute convolutions by scalar multiplications, this
relationship reads:

Wideal( f ) = Adj{H( f )} ·Λ ·P, (1)
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Figure 2: Directivity patterns of the ideal separation solution.

where the Adj{·} operator computes the adjoint of a square ma-
trix. The frequency-independent matrix P (a matrix with a one
in each row and each column, and zeros elsewhere) and the diag-
onal matrix Λ=Diag{α1, . . . ,αP} describe an arbitrary permuta-
tion and scaling of the BSS outputs, respectively. An algorithm
converging to a solution satisfying (1) achieves perfect separation
of the competing sources since it forces the overall system

Cideal( f ) = H( f ) ·Wideal( f )

= H( f ) ·Adj{H( f )} ·Λ ·P

= det{H( f )} ·Λ ·P (2)

to become diagonal, up to a permutation among the BSS outputs.
det{·} refers to the determinant (i.e., a scalar) of a square ma-
trix. The uncritical (since frequency-independent) permutation
and scaling ambiguities will be ignored in the rest of this paper,
i.e., Λ=P=I, the identity matrix.

2.2 Relations between BSS and beamforming

Beamformers are processors exploiting the spatial diversity of-
fered by a microphone array to enhance signals coming from a
given direction of interest while rejecting interfering signals com-
ing from other directions. Hence, BSS has often been heuristi-
cally interpreted as a set of blind adaptive beamformers [4]. This
interpretation can be partly justified by observing the directivity
pattern, i.e., the response to monochromatic plane waves com-
ing from all possible directions θ (measured with respect to the
normal of the array axis) of each BSS output:

Bq(W,θ , f ) =

∣

∣

∣

∣

∣

P

∑
p=1

wpq( f )e− j2π f dp sin(θ)/c

∣

∣

∣

∣

∣

2

, (3)

where c is the sound velocity and dp is the distance from the p-th
sensor to the first sensor of the assumed linear array.

Under the free-field assumption and neglecting attenuation
in the propagation medium, the (single-path) filters of the mixing
system H can be written as:

hFF
qp( f ) = e− j2π f τqp(θq), (4)

where τqp(θq) = dp sin(θq)/c is the TDOA of the q-th source
(with DOA θq) at the p-th sensor. This allows to compute
the BSS directivity patterns of the ideal separating filters (1)
in the free-field case. They are shown in Fig. 2a, for P = 3,
[d1 d2 d3]=[0m 0.042m 0.21m], [θ1 θ2 θ3]=[−40o 10o 40o] and
sampling frequency fs= 16kHz. Values smaller than −60dB have
been clipped. Moreover, Fig. 2b shows the BSS directivity pat-
terns of the ideal separation solution computed for a reverber-
ant lecture room with identical geometric parameter values. The
mixing system was here generated from measured Room Impulse

Responses (RIRs) for sources located two meters away from the
center of the sensor array.

We see from Fig. 2a that the ideal separation solution under
the free-field assumption consists of a set of P null-beamformers,
each placing P− 1 perfect spatial nulls (i.e., with infinite atten-
uation) in the direction of P− 1 competing sources. The ideal
separation solution can be seen, in this case, as a generalization
of the 2-channel delay-and-subtract beamformer introduced in
[5]. However, in realistic conditions, considering BSS as a set
of blind beamformers is a bit misleading and somehow reduc-
ing since, contrary to a beamformer, the ideal BSS solution (1)
still guarantees perfect interference rejection. This can be seen in
Fig. 2b, where the spatial nulls are hardly visible, although per-
fect source separation is provided. In reverberant environments,
multiple paths exist between each source and each sensor. While
methods based on a single-path propagation model (like classical
beamformers) see multiple sources for several propagation paths
of the same source, a BSS algorithm sees only the actual P coher-
ent point sources [4]. Extraction of one source in each BSS out-
put is then performed by compensating simultaneously for every
acoustical propagation path (so not only the direct path) coming
from the remaining P− 1 interfering sources. This corresponds
to the joint diagonalization (2) of C( f ) in all frequencies and for
an arbitrary H( f ).

3 Localization based on BSS

While beamformers need some prior knowledge on the source
positions to be correctly steered, a BSS algorithm can recover
the original source signals without this prior knowledge. Intu-
itively, this self-steering capacity should therefore imply that the
BSS demixing filters contain some useful information on the lo-
cation of each source. In the following, we present two methods
to extract this information.

3.1 TDOA extraction using blind system iden-

tification

One way to retrieve the localization information from BSS
demixing filters has been presented in [3]. It relies on the abil-
ity of the broadband BSS algorithm [1] to converge to a solution
of the form described by (1). Expanding (1) for the case of P = 2
sources and Λ=P=I:

Wideal( f ) =

[

h22( f ) −h12( f )
−h21( f ) h11( f )

]

, (5)

we see actually that the ideal separation solution allows to directly
identify the filters of the acoustical mixing system. For localiza-
tion purposes, the TDOA of each source can be extracted from
(5), simply by identifying the position of the direct path compo-
nent (i.e., the dominant one) in each filter estimate [3].

In the general case P > 2, expanding (1) does not directly
provide a one-to-one relation between each acoustical filter and
the filters of the ideal separation solution. An additional step is
therefore required after BSS in order to obtain the estimate of the
mixing system from the demixing system [2].

3.2 DOA extraction using averaged BSS di-

rectivity patterns

As a simplified approximate solution for P > 2, we follow here
another approach inspired from existing works on narrowband
BSS. It was shown in Sect. 2.2 that BSS acts as a set of null-
beamformers under the free-field assumption. Although this in-
terpretation does not entirely hold anymore under reverberant
conditions, it has often been used to perform localization in each
frequency bin and to address the internal permutation problem
specific to narrowband BSS approaches, based on the BSS direc-
tivity patterns [5, 6].
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Figure 3: Averaged BSS directivity patterns in a lecture room.

Working under the far-field assumption, the directivity pat-
terns of the adaptive demixing systems delivered by the broad-
band BSS algorithm [1] can be exploited in a similar way. How-
ever, instead of considering each frequency bin and each output
separately, we average here the BSS directivity patterns over the
frequencies, and over the P−1 “best” BSS outputs, i.e., discard-
ing for each frequency point and each (discrete) angle, the output
with maximum array response. The averaged directivity pattern
B̄(W,θ) is therefore computed as follows:

q∗(θ , f ) = argmax
q

Bq(W,θ , f ), (6)

B̄(W,θ) =
1

C

∫

f

P

∑
q=1

q6=q∗(θ , f )

Bq(W,θ , f ) df , (7)

with C being an arbitrary constant. In practice, the integral is re-
placed by a summation over a finite number of frequency points.
This averaging procedure allows to largely attenuate the impact of
spatial aliasing occuring at high frequencies since only the “true”
spatial nulls (as opposed to the unwanted grating lobes) add up
coherently when summing over the BSS outputs and frequencies.
This allows to gather very useful localization information also
from higher frequency regions, even with large microphone spac-
ings, contrary to the approach presented in [5, 6] where these
regions are simply discarded. Source localization can then be
achieved by identifying the angles corresponding to the P deep-
est local minima in B̄(W,θ).

Note that the approach originally presented in [6] is limited
to the case of two sources only [9], whereas the proposed method
is easily applicable to three or more sources. This is illustrated
by Fig. 3 for the localization of P = 3 sources in the lecture room
already introduced in Sect. 2.2. The figure shows the averaged
directivity patterns of the ideal solution (solid line), and of the
BSS demixing filters after convergence of the broadband BSS al-
gorithm (dashed line). The former was computed by applying the
averaging procedure (7) to the directivity patterns of Fig. 2b. The
geometrical setup considered for Fig. 2 and Fig. 3 were identical.
Vertical dotted lines indicate the true source DOAs. We see that
although the spatial nulls are hardly noticeable in Fig. 2b, P = 3
local minima pointing towards each source become clearly visi-
ble when applying the above averaging procedure (see the solid
line). The local minima are also easily detectable in the averaged
directivity pattern identified by the adaptive demixing filters (the
dashed line).

This shows that the broadband BSS algorithm converges in-
deed to the desired solution and can serve for localization pur-
poses, without prior knowledge on the mixing process. Reverber-
ation might disturb the DOA estimation in some cases but in gen-
eral, as long as the direct propagation path is sufficiently strong
compared to the reflection paths and the far-field assumption is
sufficient for the intended application, the DOA estimation based
on directivity patterns is applicable, as shown by the experimental
results presented in the next section.

4 Experimental evaluations

4.1 Experimental setup

The localization performance of the presented BSS-based
schemes have been assessed under reverberant and noisy con-
ditions. To this aim, a linearly and equally-spaced array of
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Figure 4: Experimental setup.
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Figure 5: Localization of two sources.

six omnidirectional microphones has been placed in the lecture
room already mentioned in Sect. 2 and Sect. 3, with reverbera-
tion time T60 ≈ 1sec. RIRs have been measured at the sampling
frequency fs = 16kHz, for source positions located on a circle
at a distance of two meters from the center of the array, as de-
picted in Fig. 4. Microphone signals were then generated by con-
volving speech signals with the measured RIRs and possibly by
adding some spatio-temporally uncorrelated white noise at 5dB
and 15dB SNR.

In the following, the methods based on Blind System Identi-
fication (Sect. 3.1) and Averaged Directivity Patterns (Sect. 3.2)
are labelled BSI and ADP, respectively. A BSS update followed
by a DOA estimation was realized every 4096 samples at the sam-
pling frequency fs= 16kHz. The directivity patterns were com-
puted with an angular resolution of 1o and a frequency resolution
of 125Hz. To reduce the computational complexity of the BSS
part, short BSS filters of length L = 128 samples have been used.
This forces the BSS algorithm to concentrate on the early parts
of the desired solution, which contain most of the information on
the direct acoustical propagation paths.

4.2 DOA estimation results

Figure 5 shows the localization results obtained with both meth-
ods, using microphones 1 and 6 (i.e., for a microphone spacing
d = 0.21m, see Fig. 4), for P = 2 sources placed far apart (left
column) or very close to each other (right column). Note that con-
trary to the BSI method, the ADP method relies on the far-field
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Figure 6: Localization of three sources.

assumption to compute the BSS directivity patterns (Sect. 3.2).
We therefore present the localization results in terms of DOA
estimation performance, thereby mapping each TDOA estimate
τ delivered by the BSI method into a DOA θ = arcsin(cτ/ fsd).
Moreover, Fig. 6 and Fig. 7 show the results obtained from the
ADP method for P = 3, 5 and 6 sources when using sensors [1 2
6], [1 2 3 4 6] and [1 2 3 4 5 6], respectively.

In this highly reverberant environment, the BSI method for
two sources, and the ADP method for up to six sources, per-
formed well, even for closely spaced sources and at relatively
high background noise levels, although a few outliers appeared
in the difficult 5dB-SNR case. From Fig. 7, we also see that the
ADP method sometimes detected less sources than the expected
P, but this happened only for short periods of time and can be at-
tributed to speech pauses. The localization was generally very ac-
curate in all considered conditions, except at large off-broadside
angles of incidence where the spatial resolution of the linear array
is the lowest.

5 Conclusions
Building upon the general form of the ideal separation solution
and the relations existing between BSS and beamforming, we
studied two methods to retrieve the localization information con-
tained in the demixing system of a TRINICON-based broadband
BSS algorithm. The first, already existing, approach [3] relies on
the ability of the BSS algorithm to blindly identify the MIMO
acoustical system. The second approach relies on the far-field as-
sumption and uses the directivity patterns of the BSS demixing
filters, similar to [6]. But we apply here an averaging procedure
which allows us to treat the general case of two or more sources
and to gather very useful localization information from every fre-
quency region, including those corrupted by spatial aliasing for
large microphone spacings.

Both techniques showed their effectiveness in a highly re-
verberant and noisy environment for two sources. The proposed
method based on averaged directivity patterns also showed its
applicability in the presence of up to six simultaneously active
sound sources. Future works will focuss on extending the method
to nonlinear microphone array geometries for multidimensional
localization.
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Figure 7: Localization of five sources (left column) and six
sources (right column).
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